Probability Examples

- A jar contains 30 red marbles, 12 yellow marbles, 8 green marbles and 5 blue marbles
- What is the probability that you draw and replace marbles 3 times and you get NO red marbles?
- There are 55 marbles, 25 of which are not red
- $\mathrm{P}($ getting a color other than red $)=\mathrm{P}(25 / 55) \approx .455$
- Probability of this happening 3 times in a row is found by $.455^{*} .455^{*} .455 \approx .094$

Example 2: At least 1 Red

- A jar contains 30 red marbles, 12 yellow marbles, 8 green marbles and 5 blue marbles
- What is the probability that you draw and replace marbles 3 times and you get at least 1 Red?
- It's easier to calculate the probability of getting NO red marbles, and subtract that from 1 (we use the complement rule : $\mathrm{P}\left(\mathrm{A}^{\mathrm{C}}\right)=1-\mathrm{P}(\mathrm{C})$
- From previous example, it is $1-.094=.906$

Example 3: The First Red

- A jar contains 30 red marbles, 12 yellow marbles, 8 green marbles and 5 blue marbles
- You draw and replace marbles 3 times. What is the probability the third marble is the first red marble?
- This means the first two are not red. We calculated P (drawing a non-red) $=.455$. Therefore, $P($ red $)=.545$
- $P($ non-red $\&$ non-red $\&$ Red $)=P($ non-red $) * P($ nonred) ${ }^{*} P($ red $)=.455$ * .455 * $.545=.113$

Example 4: Red, Yellow and Blue

- A jar contains 30 red marbles, 12 yellow marbles, 8 green marbles and 5 blue marbles
- You draw and replace marbles 3 times. What is the probability you draw 1 Red, 1 Yellow, and 1 Blue?
- This is harder, because we are drawing marbles in an order, but we don't care about which order we get Red, Yellow and Blue, just that there is 1 of each.
- But we can do it!

Example 4: Continued

- Let RBY = "Draw a Red, then Blue, then Yellow"
- So all disjoint events we want to consider are: RBY, RYB, YRB, YBR, BYR, BRY - there are 6 of them.
- $P(R B Y)=P(R)^{*} P(B) * P(Y)=(30 / 55)^{*}(5 / 55)^{*}(12 / 55)$ = . 0108
- But we have 6 disjoint cases. Because each one is calculated as a product of the three, and each disjoint case has the same probability (each order is equally likely), our answer is $6 * .0108=.0649$

